The Importance of Non-accessible Crosslinks and Solvent Accessible Surface Distance in Modeling Proteins with Restraints From Crosslinking Mass Spectrometry*
نویسندگان
چکیده
Crosslinking mass spectrometry (XL-MS) is becoming an increasingly popular technique for modeling protein monomers and complexes. The distance restraints garnered from these experiments can be used alone or as part of an integrative modeling approach, incorporating data from many sources. However, modeling practices are varied and the difference in their usefulness is not clear. Here, we develop a new scoring procedure for models based on crosslink data-Matched and Nonaccessible Crosslink score (MNXL). We compare its performance with that of other commonly-used scoring functions (Number of Violations and Sum of Violation Distances) on a benchmark of 14 protein domains, each with 300 corresponding models (at various levels of quality) and associated, previously published, experimental crosslinks (XLdb). The distances between crosslinked lysines are calculated either as Euclidean distances or Solvent Accessible Surface Distances (SASD) using a newly-developed method (Jwalk). MNXL takes into account whether a crosslink is nonaccessible, i.e. an experimentally observed crosslink has no corresponding SASD in a model due to buried lysines. This metric alone is shown to have a significant impact on modeling performance and is a concept that is not considered at present if only Euclidean distances are used. Additionally, a comparison between modeling with SASD or Euclidean distance shows that SASD is superior, even when factoring out the effect of the nonaccessible crosslinks. Our benchmarking also shows that MNXL outperforms the other tested scoring functions in terms of precision and correlation to Cα-RMSD from the crystal structure. We finally test the MNXL at different levels of crosslink recovery (i.e. the percentage of crosslinks experimentally observed out of all theoretical ones) and set a target recovery of ∼20% after which the performance plateaus.
منابع مشابه
Xwalk: computing and visualizing distances in cross-linking experiments
MOTIVATION Chemical cross-linking of proteins or protein complexes and the mass spectrometry-based localization of the cross-linked amino acids in peptide sequences is a powerful method for generating distance restraints on the substrate's topology. RESULTS Here, we introduce the algorithm Xwalk for predicting and validating these cross-links on existing protein structures. Xwalk calculates a...
متن کاملxVis: a web server for the schematic visualization and interpretation of crosslink-derived spatial restraints
The identification of crosslinks by mass spectrometry has recently been established as an integral part of the hybrid structural analysis of protein complexes and networks. The crosslinking analysis determines distance restraints between two covalently linked amino acids which are typically summarized in a table format that precludes the immediate and comprehensive interpretation of the topolog...
متن کاملIntroducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation
The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...
متن کاملSurface Accessibility and Dynamics of Macromolecular Assemblies Probed by Covalent Labeling Mass Spectrometry and Integrative Modeling
Mass spectrometry (MS) has become an indispensable tool for investigating the architectures and dynamics of macromolecular assemblies. Here we show that covalent labeling of solvent accessible residues followed by their MS-based identification yields modeling restraints that allow mapping the location and orientation of subunits within protein assemblies. Together with complementary restraints ...
متن کاملCrosslinking Constraints and Computational Models as Complementary Tools in Modeling the Extracellular Domain of the Glycine Receptor
The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel superfamily, is the major inhibitory neurotransmitter-gated receptor in the spinal cord and brainstem. In these receptors, the extracellular domain binds agonists, antagonists and various other modulatory ligands that act allosterically to modulate receptor function. The structures of homologous receptors and bindi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2016